BROWN-PETERSON AND ORDINARY COHOMOLOGY THEORIES OF CLASSIFYING SPACES FOR COMPACT LIE GROUPS

AKIRA KONO AND NOBUAKI YAGITA

Dedicated to Professor Tokushi Nakamura on his 60th birthday

ABSTRACT. The Steenrod algebra structures of $H^*(BG; \mathbb{Z}/p)$ for compact Lie groups are studied. Using these, Brown-Peterson cohomology and Morava K-theory are computed for many concrete cases. All these cases have properties similar as torsion free Lie groups or finite groups, e.g., $BP^{\text{odd}}(BG) = 0$.

Introduction

Let BG be the classifying space of a compact Lie group G. Let p be a fixed prime. It is well known that if $H^*(BG)_{(p)}$ has no p-torsion, then it is a polynomial algebra generated by even dimensional elements. Therefore the Atiyah-Hirzebruch type spectral sequence converging to the Brown-Peterson cohomology $BP^*(BG)$ collapses and $BP^*(BG) \simeq BP^* \otimes H^*(BG)_{(p)}$ where \otimes denotes completed tensor product (see §1). Hence we get:

- (1) $BP^*(BG) = BP^{\text{even}}(BG)$.
- (2) $BP^*(BG)$ is p-torsion free.
- (3) $BP^*(BG)$ has no nilpotent elements.
- (4) $BP^*(BG)$ is BP^* -flat for finite $BP^*(BP)$ -modules. Moreover

$$BP^*(BG \times BG') \simeq BP^*(BG) \otimes_{BP^*} BP^*(BG')$$

for all compact Lie groups G'.

 $(5) K(n)^*(BG) \simeq K(n)^* \otimes_{BP^*} BP^*(BG)$

where $K(n)^*(-)$ is the Morava K-theory. Moreover if G is a classical Lie group, we know

(6) $BP^*(BG) = \operatorname{Ch}_{BP}(BG)$, the Chern subring of $BP^*(BG)$ generated by Chern classes for all complex representations.

The main purpose of this paper is to show that the above properties hold in many cases even if $H^*(BG)$ has p-torsion. Note that for the ordinary cohomology theory $H^*(BG)_{(p)}$, the corresponding properties (1)-(4), (6) do not always hold, for example, $H^*(BG)_{(p)} \neq H^{\text{even}}(BG)_{(p)}$. Landweber showed (1)-(6) hold for all abelian groups [L1]. Moreover he conjectured (2), (4), (6) for

Received by the editors July 12, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R77; Secondary 55N22.

Key words and phrases. Classifying space BG, compact Lie groups, BP-theory, cohomology operations.

(7)

all compact Lie groups in [L3]. By [T-Y, Y2] when G is a direct product of metacyclic groups or minimal nonabelian p-groups (1)-(6) hold. A result of Hopkins, Kuhn and Ravenel [H-K-R] easily shows that when G is a finite group, (2) implies

$$BP^*(BG) \hookrightarrow \underline{\lim} BP^*(BA)$$
,

A runs through all conjugacy classes of abelian subgroups of G.

Remark that if a p-Sylow subgroup of a finite group G satisfies (1)-(7), so does G.

On the other hand, Wilson showed that $BP^*(BO(n))$ is generated by the Chern classes of the complexification of the universal real bundle. By using Wilson's arguments, we show

Theorem 1. Properties (1)–(2) and properties (4)–(6) hold for direct products of O(n), SO(2n+1).

The ordinary cohomology rings $H^*(BG; \mathbb{Z}/p)$ for $G = F_4$, PU(3) are given by Toda [T1] and by Kono, Mimura, and Shimada [K-M-S]. We study $H^*(BPU(3))$ in detail, considering the relation to its abelian subgroups. Hence we get

(7)'
$$H^*(BG; \mathbb{Z}/p) \hookrightarrow \lim_{n \to \infty} H^*(BA; \mathbb{Z}/p)$$

for G = PU(3). This was conjectured by J. F. Adams for all connected compact Lie groups G and $p \ge 3$ and solved for $G = F_4$, p = 3 by Adams and Kono. We also know that there are only two conjugacy classes of maximal elementary 3-abelian subgroups of PU(3). Moreover we can determine the Steenrod algebra structure of $H^*(BPU(3))$. Using these, we show

Theorem 2. Properties (1)–(5), (7) hold when G = PU(3) and F_4 for p = 3, but (6) does not hold for G = PU(3).

Mimura and Kono study $H^*(BG; \mathbb{Z}/p)$ for many compact Lie groups [K-M 1, 2]. Also using their results, we get

Theorem 3. The properties (1)-(3), (7) hold when $G = \text{Spin}(n)n \le 10$, G_2 , F_4 , E_6 , PSU(4n+2) for p=2.

Bakuradze [B-N] showed that (1)–(7) hold for the normalizer group of maximal torus in $Sp(1) \times Sp(1)$. Hunton showed $K(n)^*(BG) = K(n)^{\text{even}}(BG)$ for some other compact Lie groups [H]. Inoue [I] determined $BP^*(BSO(6))$ and showed (1) for this case.

Conjecture 4. Assertions (1)–(5) and (7) hold for all compact Lie groups.

There are no application of these results now. However we hope $BP^*(BG)$ can aid in the understanding of the ordinary cohomology $H^*(BG)$ which seems so complicated in general cases. For example, we presume that the following conjecture, which holds in all cases in Theorems 1-3, is true.

Conjecture 5. If G is a connected compact Lie group, then for each odd dimensional element $x \in H^*(BG; \mathbb{Z}/p)$, there is i such that $Q_m x \neq 0$ for all $m \geq i$, where Q_m are the Milnor primitive operators.

The authors would like to thank Norihiko Minami and Michisige Tezuka for many conversations and Koemon Irie who pointed out errors in the first version.

1. BP AND RELATED COHOMOLOGY THEORIES

Throughout this paper, we assume that spaces X, Y mean CW-complexes whose n-skeleton is finite complexes for each $n \geq 0$. Let $BP^*(-)$ be the Brown-Peterson cohomology localized at p with the coefficient $BP^* = Z_{(p)}[v_1, \ldots]$, $|v_i| = -2(p^i - 1)$. We consider the cohomology theories $k^*(-)$ with the coefficient $k^* = BP^*/(\text{Ideal }S)$, e.g., $P(n)^* = Z/p[v_n, v_{n+1}, \ldots]$, $\widetilde{P}(n)^* = Z_{(p)}[v_n, \ldots]$, $BP\langle n\rangle^* = Z_{(p)}[v_1, \ldots, v_n]$, $k(n)^* = Z/p[v_n]$, $\widetilde{k}(n)^* = Z_{(p)}[v_n]$, and $K(n)^* = Z/p[v_n, v_n^{-1}]$. We consider the Atiyah-Hirzebruch spectral sequence $E_2^{*,*} = H^*(X; k^*) \Rightarrow k^*(X)$. Hereafter we assume the convergence of this spectral sequence and hence

$$(1.1) j^* : k^*(X) \simeq \varprojlim_N k^*(X^N).$$

Note that if X = BG or k^n is a fine group, this assumption holds. (See [L3].) Define a filtration $F^N(X) = \text{Ker}(j_N^* : k^*(X) \to k^*(X^N))$ of $k^*(X)$ and define a topology in $k^*(X)$ by $F^N(X)$ as the fundamental neighbourhoods of 0. Then

(1.2)
$$k^*(X) \simeq \varprojlim_{N} k^*(X)/F^N(X)$$

is a complete algebra. Let A, B be k^* -complete algebras with filtrations A^N , B^N . We define the complete tensor product \otimes by

$$(1.3) A \otimes_{k^*} B \simeq \varprojlim_{} A \tilde{\otimes}_{k^*} B / (A^N \tilde{\otimes}_{k^*} B + A \tilde{\otimes}_{k^*} B^N)$$

where $\tilde{\otimes}$ is the usual tensor product. Then if X and Y are p-torsion free, then we can write

$$(1.4) k^*(X \times Y) \simeq k^*(X) \otimes_{k^*} k^*(Y).$$

Note that $-\otimes_{k^*}$ in this paper means that each element is expressed as infinite sum.

Landweber's exact functor theorem [L2] says that injectivity of the following (1.5) for all $n \ge 0$ (let $p = v_0$),

$$(1.5) v_n: P(n)^* \otimes_{BP^*} BP^*(X) \to P(n)^* \otimes_{P(n)^*} BP^*(X)$$

implies the BP^* -flatness of $BP^*(X)$ for finite $BP^*(BP)$ -modules. In particular we have

$$(1.6) BP^*(X \times Y) \simeq BP^*(X) \otimes_{BP^*} BP^*(Y) \text{ for all } Y \text{ satisfies } (1.1).$$

From the Sullivan exact triangles

$$BP^{*}(X) \xrightarrow{\rho} P(1)^{*}(X) \xrightarrow{\rho} P(2)^{*}(X) \xrightarrow{\rho} P(3)^{*}(X) \cdots$$

$$p \searrow \delta \swarrow v_{1} \searrow \delta \swarrow v_{2} \searrow \swarrow \delta$$

$$BP^{*}(X) \qquad P(1)^{*}(X) \qquad P(2)^{*}(X)$$

the injectivity of (1.5) is equivalent to the assertion that $\rho: BP^*(X) \to P(n)^*(X)$ is epic for all $n \ge 0$ and is that

$$(1.7) P(n)^*(X) \simeq P(n)^* \otimes_{BP^*} BP^*(X).$$

From Johnson-Wilson theorem [J-W], if X satisfies (1.7), then we get

(1.8)
$$K(n)^*(X) \simeq K(n)^* \otimes_{BP^*} BP^*(X).$$

Lemma 1.9. If X and Y satisfy the injectivity of (1.5), then so does $X \times Y$. Proof. By the exact functor theorem for $P(n)^*$ -theory, we have

$$P(n)^*(X\times Y)\simeq P(n)^*(X)\otimes_{P(n)^*}P(n)^*(Y),$$

which is isomorphic to

$$P(n)^* \otimes_{BP^*} (BP^*(X)) \otimes_{P(n)^*} P(n)^* \otimes_{BP^*} (BP^*(Y)) \simeq P(n)^* \otimes_{BP^*} BP^*(X \times Y).$$

Therefore $X \times Y$ satisfies (1.7) and so (1.5). \square

By the same argument as Theorem 3.3 [Y2], the kernel of $r: BP^*(BG) \rightarrow \lim BP^*(BA)$; A all abelian subgroups, is nilpotent.

Lemma 1.10. The injectivity of r is equivalent to that $BP^*(BG)$ has no nonzero nilpotent element.

Proof. We only need $BP^*(BA)$ has no nilpotent element. Consider the spectral sequence induced from

$$0 \rightarrow A' \rightarrow A \rightarrow Z/p \rightarrow 0$$
.

Then

$$E_2^{*,*'} \simeq E_{\infty}^{*,*'} = H^*(Z/p) \otimes BP^{*'}(A')/(p) \simeq Z/p[y] \otimes BP^{*'}(A')$$

for *>0, since $BP^*(A')$ is p-torsion free. Suppose $a^l=0$ in $BP^*(BA)$. Let $y^sx\neq 0\in E_\infty^{2s}$, be the corresponding element to a. Since $(y^sx)^l=0$, $x^l=0$ in $BP^*(BA')/(p)$. Let us write $x^l=p^rx'$, $x'\neq 0$ mod p in $BP^*(BA')$. Then

$$a^{l} = p^{r}x'y^{s} = v_{1}^{r}y^{s+r(p-1)}x'$$
 in $E_{\infty}^{2(s+r(p-1)),*}$.

This element is nonzero because $BP^*(BA')/(p)$ has no v_1 -torsion. \square

Therefore we get the following implications:

(1.11) (3)
$$\Leftrightarrow$$
 (7) \Rightarrow (2) \Leftarrow ((1.7) for $X = BG$) \Leftrightarrow (4) \Rightarrow (5) \Leftrightarrow (1) \Leftarrow (6).

Kuhn, Hopkins, and Ravenel showed that when G is a finite group, $|G|^{-1}r$ is isomorphic. Therefore

$$(1.12) (2) \Leftrightarrow (7) for finite groups.$$

2. The orthogonal group O(n)

Before considering $BP^*(BO(n))$, we consider cohomology operations Q_i . Recall $Q_{i+1} = \mathcal{P}^{p^i}Q_i - Q_i\mathcal{P}^{p^i}$ (= $\operatorname{Sq}^{2^i}Q_1 + Q_i\operatorname{Sq}^{2^i}$ for p=2) and $Q_0 = \mathcal{B}(Q_0 = \operatorname{Sq}^1)$. The first nonzero differential of the spectral sequence

(2.1)
$$E_2^{*,*} = H^*(X; P(m)^*) \Rightarrow P(m)^*(X)$$

is given by $d_{2p^m-1} = v_m \otimes Q_m$.

Lemma 2.2. Let $E_i = \Lambda[Q_m, \ldots, Q_{m+i-1}]$ and $E_0 = Z/p$. Suppose that there is an E_i -module injective $E_i \otimes G_i \subset H^*(X; Z/p)$ and there is a Z/p-module isomorphism

$$H^*(X; \mathbb{Z}/p) \simeq \bigoplus_{i=0}^M E_i \otimes G_i$$

such that $Q_m \cdots Q_{m+i-1}G_i \in \text{Im } \rho(P(m)^*(X) \to H^*(X; \mathbb{Z}/p))$ (for i = 0 $G_0 \in \text{Im } \rho$). Then the infinite term of the spectral sequence (2.1) is

$$E_{\infty}^{*,*} \simeq \bigoplus_{i>0}^{M} P(i+m)^* Q_m \cdots Q_{m+i-1} G_i \oplus P(m)^* G_0.$$

Proof. By the induction on r for $d_{2p^{m+r-1}-1}$, we assume that $E_{2p^{m+r-1}}=A_r\oplus B_r$, where

$$A_r = \bigoplus_{i=0}^r P(m+i)^* Q_m \cdots Q_{m+i-1} G_i,$$

$$B_r = \bigoplus_{i=r+1}^M P(m+r)^* Q_m \cdots Q_{m+r-1} (E_{m+r,i-r}) G_i,$$

and where $E_{m+r,i-r} = \Lambda[Q_{m+r}, \dots, Q_{m+i-1}]$. Indeed, $A_0 = P(n)^*G_0$ and $B_0 = P(m)^* \otimes (\bigoplus_{i=1}^M E_i \otimes G_i)$, hence $A_0 \oplus B_0 = P(m)^* \otimes H^*(X; \mathbb{Z}/p)$.

By the supposition of the lemma, all elements in A are infinite cycles. Assume $d_s x \neq 0$, $x \in B$. Since B is a $P(m+r)^*$ -free modules, it is necessary $s \geq 2p^{m+r} - 1$. Hence consider $d_{2p^{m+r}-1} = v_{m+r} \otimes Q_{m+r}$. Therefore

$$E_{2p^{m+r}} \simeq A_r \oplus \bigoplus_{i=r+1}^M P(m+r+1)^* Q_m \cdots Q_{m+r} (E_{m+r+1,i-r-1}) G_i$$

$$\simeq A_{r+1} \oplus B_{r+1}.$$

Since $B_{M+1} = 0$, we get the lemma. \square

If
$$H^*(X; Z/p) = E_{0,n} = \Lambda(Q_0, ..., Q_n)$$
, then
$$P(m)^*(X) \simeq P(n)^* \Lambda[Q_0, ..., Q_{m-1}].$$

This fact is known as X = V(n), Smith-Toda spectrum.

The BP-cohomology of the classifying space of the nth orthogonal group, $BP^*(BO(n))$ is computed by W. S. Wilson. Since $H^*(BO(n))$ has only 2-torsion, we need only consider the 2-primary part.

Theorem 2.3 (Wilson [W]).

$$BP^*(BO(n)) \simeq BP^*[[c_1, \ldots, c_n]]/(c_1 - c_1^*, \ldots, c_n - c_n^*)$$

where c_i is the ith Chern class of complexification of universal real bundle and c_i^* is the Chern class of its complex conjugation.

Recall the $\mathbb{Z}/2$ -cohomology of BO(n) and $(B\mathbb{Z}/2)^n$. It is well known

$$H^*(BO(n); \mathbb{Z}/2) \hookrightarrow H^*((B\mathbb{Z}/2)^n; \mathbb{Z}/2)$$

$$\downarrow \parallel \qquad \qquad \downarrow \parallel$$

$$\mathbb{Z}/2[w_1, \dots, w_2] \hookrightarrow \mathbb{Z}/2[x_1, \dots, x_n]$$

where w_i is the *i*th elementary symmetric polynomial of x_s . Then w_i is the *i*th Whitney class and $c_i = i^*(c_i) = w_i^2$ for the complexification map $i: BO(n) \to BU(n)$. The following lemma is just the $P(m)^*$ -analogue of Wilson's (p. 359, Theorem 2.1 in [W]).

Lemma 2.4. Let G_k be $\mathbb{Z}/2$ -vector space in $H^*(BO(n); \mathbb{Z}/2)$ generated by symmetric functions

$$\sum x_1^{2i_1+1} \cdots x_k^{2i_k+1} x_{k+1}^{2j_1} \cdots x_{k+q}^{2j_q}, \qquad k+q \leq n,$$

with $0 \le i_1 \le \cdots \le i_k$ and $0 \le j_1 \le \cdots \le j_q$; and if the number of j equal to j_u is odd, then there is some $s \le k$ such that

$$2i_s + 2^{s+m} < 2j_u < 2i_s + 2^{s+m+1}$$
.

Then G_k satisfies the assumption of Lemma 2.2 and hence the infinite term of the Atiyah-Hirzebruch spectral sequence converging to $P(m)^*(BO(n))$ is

$$E_{\infty}^{*,*} \simeq \bigoplus_{i=0}^{n} P(m+r)^{*} Q_{m} \cdots Q_{m+r} G_{r}.$$

Proof. First note $Q_m \cdots Q_{m+r} G_r$ is generated by functions of $\sum x_1^{2h_1} \cdots x_{k+q}^{2h_{k+q}}$ and hence is in $\mathbb{Z}/2[w_1^2, \ldots, w_n^2]$ which is in

Im
$$\rho(P(m)^*BO(n)) \to H^*(BO(n); \mathbb{Z}/2)$$

since $i^*(c_j) = w_j^2$. The proof for satisfying the assumption of Lemma 2.2 is completely the same as the proof of Wilson's Theorem 1 [W, p. 360] except for changing Q_i to Q_{m+i} and 2^{v+1} to 2^{v+m} . \square

Corollary 2.5.

$$P(m)^*(BO(n)) \simeq P(m)^* \otimes_{BP^*} BP^*(BO(n)),$$

$$K(m)^*(BO(n)) \simeq K(m)^* \otimes_{BP^*} BP^*(BO(n)).$$

Proof. From Lemma 2.4, $\rho: BP^*(BO(n)) \to P(m)^*(BO(n))$ is epic. \square

It is well known that there is an isomorphism of Lie groups

$$Z/2 \times SO(2n+1) \simeq O(2n+1)$$

and hence

$$BP^*(BZ/2) \otimes_{BP^*} BP^*(BSO(2n+1)) \simeq BP^*(BO(2n+1)),$$

and $BP^*(BZ/2)$ is BP^* -flat. Therefore BP(BSO(2n+1)) is generated by $c_i = (w_i^2)$, $2 \le i \le 2n+1$. The same facts hold for $P(m)^*$ -theory $n \ge 1$. Hence $\rho: BP^*(BSO(2n+1)) \to P(m)^*(BSO(2n+1))$ is epic. Therefore we get Theorem 1 in the introduction.

Remark that the squaring operation is given by

(2.6)
$$\operatorname{Sq}^{i} w_{k} = \sum_{j}^{i} {k-j-1 \choose i-j} w_{k+i-j} w_{j} \qquad (0 \le i \le k).$$

3. Cohomology of BPU(3)

The projective unitary group PU(3) is defined as $PU(3) = SU(3)/\Gamma$ where Γ is the center of SU(3). Let us write

$$(3.1) \quad \tilde{a} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} w & 0 & 0 \\ 0 & w^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \tilde{c} = \begin{pmatrix} w & 0 & 0 \\ 0 & w & 0 \\ 0 & 0 & w \end{pmatrix}$$

where $w=\exp(2\pi i/3)$. Note that $\Gamma=\langle \tilde{c}\rangle$. The group generated by $\langle \tilde{a}, \tilde{b}, \tilde{c}\rangle$ is E, the nonabelian 3-group of order 27 with its exponent 3. Consider the elementary abelian 3-subgroups $V_1=E/\Gamma=\langle \tilde{a}\rangle\oplus\langle \tilde{b}\rangle$ and $V_2\subset T^2$, the maximal torus of PU(3).

Quillen [Q1] proved that for a compact Lie group

(3.2)
$$r: H^*(BG; \mathbb{Z}/p) \simeq \varprojlim_{V} H^*(BV; \mathbb{Z}/p)$$

is an F-isomorphism, where V runs the conjugacy classes of elementary p-subgroups of G. Here an F-isomorphism means $\operatorname{Ker} r \subset \sqrt{0}$; nilpotent elements and for each x, $x^{p^s} \in \operatorname{Im} r$ for some s.

We will prove a much stronger result for G = PU(3).

Theorem 3.3. The restriction map

$$r: H^*(BPU(3); \mathbb{Z}/3) \to H^*(BV_1; \mathbb{Z}/3) \otimes H^*(BV_2; \mathbb{Z}/3)$$

is injective.

Therefore $\{V_1, V_2\}$ is the set of the conjugacy classes of maximal elementary 3-subgroups in PU(3).

Let ρ be the canonical representation in SU(3) and

(3.4)
$$\tilde{\lambda} = \rho \otimes \rho^{-1} \colon SU(3) \to SU(9).$$

Since $\rho\otimes\rho^{-1}|\Gamma$ is trivial, $\tilde{\lambda}$ induces the representation λ of PU(3). It is easily computed.

Lemma 3.5.

$$\chi_{\lambda}(a^ib^j) = \begin{cases} 9, & i \equiv 0, \ j \equiv 0 \mod 3, \\ 0, & otherwise. \end{cases}$$

Corollary 3.6. $\lambda | V_1|$ is the regular representation.

Think of PU(3) as $U(3)/\widetilde{\Gamma}$ where $\widetilde{\Gamma} = \{\text{diagonal matrix } (\alpha, \alpha, \alpha), \alpha \in S^1\}$ and $\pi \colon U(3) \to PU(3)$ is its projection map. Let \widetilde{T} and $\pi(\widetilde{T}) = T$ be the maximal tori in U(3) and PU(3).

The fundamental class $\pi_1(\tilde{T})$ is generated as $\langle \tilde{t}_1, \tilde{t}_2, \tilde{t}_3 \rangle$ where

$$\tilde{t}_1 = \{ \text{diagonal}(\exp 2\pi i t, 1, 1), \ t \in [0, 1] \}$$

and so on. Then it is easily seen $\pi_*(\tilde{t}_1 + \tilde{t}_2 + \tilde{t}_3) = 0$ and $\text{Ker } \pi_* = \langle \tilde{t}_1 + \tilde{t}_2 + \tilde{t}_3 \rangle$. Denote by $t_j \in H^2(B\widetilde{T}; Z) \simeq H^1(\widetilde{T}) \simeq H_1(\widetilde{T})$ corresponding to \tilde{t}_j . Let us write $u, v \in H^2(BT; Z)$ the corresponding elements to $\pi_*(\tilde{t}_1)$ and $\pi_*(\tilde{t}_2)$ respectively.

Lemma 3.7. $\pi^* u = t_1 - t_3$ and $\pi^* v = t_2 - t_3$.

Proof. Since $H^*(BT; Z) \to H^*(B\widetilde{T}; Z)$ is monic we get the lemma from

$$\langle \pi^* u, \tilde{t}_i \rangle = \langle u, \pi_* \tilde{t}_i \rangle = 1$$
 (resp. 0, -1), $i = 1$ (resp. = 2, = 3).

Here we note $\pi_*(\tilde{t}_3)$ corresponds to -u-v. \square

Let us write T_9 be the maximal torus of U(9) and $\pi_1(T_9) = \langle t_{ij} | 1 \leq i, j \leq 3 \rangle$. Then $\tilde{\lambda}^*(t_{ij}) = t_i - t_j$. Since $\pi^* \colon H^*(BT; Z) \to H^*(B\widetilde{T}; Z)$ is monic, $\lambda^*(t_{ij}) = -\lambda^*(t_{ji})$ and $\lambda^*(t_{12}) = u - v$, $\lambda^*(t_{13}) = u$, $\lambda^*(t_{23}) = v$.

Lemma 3.8. The total Chern class in $H^*(BT)$ for $\lambda | T$ is

$$C(\lambda|T) = \lambda^*(\pi(1+t_{ij})) = (1-u^2)(1-v^2)(1-(u-v)^2)$$

= 1 + (u+v)^2 + (u+v)^4 - u^2v^2(u^2+uv+v^2).

From Corollary 3.6,

Lemma 3.9.

$$C(\lambda|V_1) = \pi(1 + \lambda_1 a + \lambda_2 b)$$

$$= (1 - a^2)(1 - b^2)(1 - (a + b)^2)(1 - (a - b)^2)$$

$$= 1 - (a^6 + a^4b^2 + a^2b^4 + b^6) + a^2b^2(a^4 + a^2b^2 + b^4)$$

where $a, b \in H^2(BV_1; \mathbb{Z}/3)$ is the Bockstein image of the dual element of \tilde{a} and \tilde{b} , identifying $H^1(BV_1; \mathbb{Z}/3) \simeq \operatorname{Hom}(V_1; \mathbb{Z}/3)$.

The cohomology of BPU(3) is given by Kono, Mimura, and Shimada [K-M-S].

Theorem 3.10. There is an algebra isomorphism

$$H^*(BPU(3); \mathbb{Z}/3) \simeq \mathbb{Z}/3[y_2, y_8, y_{12}] \otimes \Lambda(y_3, y_7)/J$$

where $|y_i|=i$ and J is the ideal generated by y_2y_3 , y_2y_7 and $y_3y_7+y_2y_8$. Moreover $y_3=\mathcal{B}y_2$, $y_7=\mathcal{P}y_3$, and $y_8=\mathcal{B}y_7$.

Note that $y_2^2y_8 = -y_3y_2y_7 = 0$. Let $R_1 = Z/3[y_2, y_{12}]$ and $R_2 = Z/3[y_8, y_{12}]$. Then there are Z/3-modules isomorphism

$$(3.11) H^*(BPU(3); \mathbb{Z}/3) \simeq y_2^2 R_1 \oplus \mathbb{Z}/3\{1, y_2, y_3, y_7\} R_2.$$

Lemma 3.12. The ideal generated by y_2^2 is $y_2^2R_1$ in (3.11).

Consider the induced map $j_1\colon BV_1\to BPU(3)$. Let a', b' be the dual element of \tilde{a} , \tilde{b} in $H^1(V_1\,;\,Z/3)\simeq \operatorname{Hom}(V_1\,;\,Z/3)$ and $\mathscr{B}a'=a$, $\mathscr{B}b'=b$. The commutative diagram

$$(3.13) \qquad B\Gamma \longrightarrow BSU(3) \longrightarrow BPU(3)$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow_{j_1}$$

$$B\Gamma \longrightarrow BE \longrightarrow BV_1$$

induces the map of spectral sequences

$$E_2^{*,*} = H^*(BV_1; H^*(B\Gamma; Z/3)) \xleftarrow{j_1^*} \widetilde{E}_2^{*,*} = H^*(BPU(3); H^*(B\Gamma; Z/3)).$$

Since $H^*(BSU(3))$ and $H^*(BE)$ is known, we get $d_2^{\downarrow}c' = a'b'$ in $E_2^{*,*}$ and $d_2c' = y_2$ in $\widetilde{E}_2^{*,*}$. Therefore $j_1^*y_2 = a'b'$.

Lemma 3.14. $j_1^*y_3 = \beta(a'b') = ab' - a'b$, $j_1^*y_7 = a^3b' - a'b^3$, and $j_1^*y_8 = a^3b - ab^3$.

The restriction $y_i|\langle a\rangle=0$ for $i\neq 12$, but $c_6(\lambda)|\langle b\rangle=b^6\neq 0$ from Lemma 3.9. Hence we can take $y_{12}=-c_6(\lambda)$.

Lemma 3.15. Ker $j_1^* = y_2^2 R_1$.

Proof. We need only prove $j_1^*|(y_3R_1+y_7R_3)$ is monic. From Lemmas 3.12 and 3.14, $(j_1^*y_8, j_1^*y_{12})$ is a regular sequence in Z/3[a, b]. Therefore $j_1^*f(y_8, y_{12}) = 0$ implies $f \equiv 0$. Let $j_1^*(y_3f+y_7g) = 0$ and $j_1^*f = F$, $j_1^*g = G$. Taking modulo a', we get $aF+a^3G=0$ and taking modulo b', we have $bF+b^3G=0$. This implies $ab(a^2-b^2)G=0$, hence G=0. The regularity follows g=0. By the same argument, we also get f=0. Of course $j_1^*y_2^2=(a'b')^2=0$. \square

Let $j_2: BT \to BPU(3)$ be the map from the inclusion of the maximal torus. Since $H^*(BT; Z)$ is torsion free, and is generated by even dimensional elements, we have

$$(3.16) j_2^* y_3 = j_2^* y_7 = j_2^* y_8 = 0.$$

Since $j_2^*c_2(\lambda)=(u+v)^2\neq 0$, we can take $j_2^*y_2=u+v$. Therefore from Lemma 3.9,

$$(3.17) c_1(\lambda) = 0, c_2(\lambda) = \varepsilon y_2^2, \varepsilon = \pm 1, c_3(\lambda) = 0.$$

The formula $c_4 = \mathcal{P}^2 c_2 + c_3 c_1 - c_2 (c_2 + c_1^2) = \mathcal{P}^2 c_2 - c_2^2$ implies $y_2^4 = (2\varepsilon - 1)y_2^4$. Hence we get $\varepsilon = 1$.

Lemma 3.18. The Chern classes $c_j(\lambda)$ are represented by y_2^2 , y_2^4 , y_{12} , and y_8^2 for j = 2, 4, 6, and 8, respectively.

Comparing Lemmas 3.8 and 3.9 and considering the diagram

$$E \xrightarrow{i_1} U(3) \xleftarrow{i_2} \widetilde{T}$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\pi} \qquad \downarrow^{\pi_2}$$

$$V_1 \xrightarrow{j_1} PU(3) \xleftarrow{j'_2} T \xleftarrow{j''_2} V_2$$

we have a short exact sequence

(3.19)
$$0 \to \pi^*(\text{Ker } j_1^*) \rightleftharpoons H^*(BPU(3); \mathbb{Z}/3) \to \text{Ker } \pi_1^* \to 0$$

with $\pi^*(\operatorname{Ker} j_1^*) = Z/3[c_1, c_6]\{c_2\} \subset H^*(BU(3); Z/3)$ and $\operatorname{Ker} \pi_1^* = Z/3\{\mathscr{S}^Ia'b'\} \subset H^*(V_1; Z/3)$.

Using Lemma 3.18, (3.19), and Lemma 3.14, we decide the Steenrod algebra structure of $H^*(BPU(3); \mathbb{Z}/3)$, and have proved Theorem 3.3.

Theorem 3.20. $\mathscr{P}^1 y_3 = y_7$, $\mathscr{B} y_7 = y_8$, $\mathscr{P}^3 y_7 = y_7 y_{12} + y_3 y_8^2$, $\mathscr{P}^3 y_8 = y_8 y_{12}$, $\mathscr{P}^1 y_{12} = y_8^2 + y_{12} y_7^2$, $\mathscr{P}^3 y_{12} = y_{12} (y_7^6 - y_{12})$.

4. Brown-Peterson cohomology of BPU(3)

Recall (3.11) in §3,

$$A = H^*(BPU(3); \mathbb{Z}/3) \simeq y_2^2 R_1 \oplus \mathbb{Z}/3\{1, y_2, y_3, y_7\} R_2$$

where $R_1 = Z/3[y_2, y_{12}]$, $R_2 = Z/3[y_8, y_{12}]$ and $Q_0y_2 = y_3$, $Q_0y_7 = y_8$. Then $H(A; Q_0) \simeq y_2^2 R_1 \oplus Z/2[y_{12}]$ and its Poincaré series is

P. S.
$$(H(A; Q_0)) = \frac{t^4}{(1-t^2)(1-t^{12})} + \frac{1}{(1-t^{12})} = \frac{1}{(1-t^4)(1-t^6)},$$

which is the Poincaré series of the polynomial algebra of degree 4 and 6 and is equal to the Poincaré series of $H^*(BPU(3); Q_0)$. Therefore the Bockstein spectral sequence collapses, i.e., $E_1 \simeq E_\infty$. This means $H^*(BPU(3))$ has no higher 3-torsion.

Consider the Atiyah-Hirzebruch spectral sequence

(4.1)
$$E_2^{*,*} = H^*(BPU(3); BP^*) \Rightarrow BP^*(BPU(3)).$$

The E_2 -term is given by

$$(4.2) E_2^{*,*} = BP^* \otimes \{y_2^2 \widetilde{R}_1 \oplus \widetilde{R}_3 \oplus R_2 y_3 \oplus R_2 y_8\}$$

where $\widetilde{R}_1 = Z_{(3)}[y_2, y_{12}]$, $\widetilde{R}_3 = Z_{(3)}[y_{12}]$. The first nonzero differential is $d_{2p-1} = v_1 \otimes Q_1$. Since $Q_1 y_3 = y_8$, we get

$$(4.3) E_{2p}^{*,*} \simeq BP^*\{y_2^2 \widetilde{R}_1 \oplus \widetilde{R}_3\} \oplus BP^*/(3, v_1) \otimes \{R_2 y_8\}.$$

These are all even dimensional elements and $E_{2p}^{*,*} \simeq E_{\infty}^{*,*}$. Therefore we see $BP^*(BPU(3)) = BP^{\mathrm{even}}(BPU(3))$. Moreover each element in $E_{2p}^{*,*}$ is nonnilpotent, we get $BP^*(BPU(3))$ has no nonzero nilpotent element. Hence (1)–(3) and (7) in the introduction hold.

However (6) does not hold as following. Recall the representation ring $R(SU(3)) = Z[\iota, \bar{\iota}]$ where ι is represented by the character of the canonical representation ρ and $\bar{\imath}$ is its conjugation. The representation ring of PSU(3)is easily deduced as the subring generated by

$$\{\iota^c \overline{\iota}^d | c + 2d \equiv 0 \mod 3, \ c, d \in \mathbb{Z}\}.$$

For $c, d \ge 0$, let M(c, d) is the corresponding PSU(3)-module.

Lemma 4.5.

$$\chi_{M(c,d)}(\tilde{a}^i\tilde{b}^j) = \begin{cases} 3^{c+d}, & i \equiv j \equiv 0 \mod 3, \\ 0, & otherwise. \end{cases}$$

Proof. This is easily seen from the facts $T_r(f \times g) = T_r(f)T_r(g)$ and

$$\chi_i(\overline{a}^j) = \chi_i(\overline{b}^j) = \begin{cases} 3, & j \equiv 0 \mod 3, \\ 0, & \text{otherwise.} \end{cases}$$

Corollary 4.6. $M(c, d)|V_1 = 3^{c+d-2}$ (regular representation).

From Lemma 3.9, $y_8|V_1 \notin \text{Image } \lambda^*(H^*(BU(3)) \to H^*(BV_1))$ where λ is the regular representation.

Corollary 4.7. Since $y_8 \notin Ch_{BP}(BPU(3))$ and $y_2^3 \notin Ch_{BP}(BPU(3))$, we have $Ch_{RP}(BPU(3)) \neq BP^*(BPU(3)).$

We now consider the BP^* -module structure of $BP^*(BPU(3))$. The BP^* algebra structure of BZ/p is well known:

$$BP^*[[u]]/[p](u), |u| = 2,$$

where $[p](u) = u +_{BP} \cdots +_{BP} u$ is the pth product of the formal group law over BP^* -theory. Note that $[p](u) = \sum v_n u^{p^n} \mod (p, v_1, \dots)^2$ and $Q_n(\alpha) = \rho(u)^{p^n}$ where $H^*(BZ/p; Z/p) \simeq Z/p[\rho(u)] \otimes \Lambda(\alpha)$ and $\rho: BP \to Z/p$ be the natural map. This fact extends as the following lemma.

Lemma 4.8 [Y1]. If there is a relation $\sum v_n x_n = 0$ in $BP^*(X)$, then there exists $y \in H^*(X; \mathbb{Z}/p)$ such that $Q_i(y) = \rho(x_i)$.

Theorem 4.9. Let us fix elements $\tilde{f}(y_i) \in BP^*(BPU(3))$ with $\rho(\tilde{f}) = f$, i.e., $\rho(\tilde{y}_{12}) = y_{12}$, $\rho(\tilde{y}_2^2) = y_2^2$. There is a BP^* -module isomorphism $BP^*(BPU(3)) \simeq (BP^*S_2\tilde{y}_2^2 \oplus BP^*\{1\} \oplus BP^*S_8\tilde{y}_8) \otimes S_{12}/(I_1, I_2)$ where $S_i = Z_{(3)}[[\tilde{y}_i]]$ and

$$I_1 \equiv \sum v_n \widetilde{Q}_n(y_7), \qquad I_2 \equiv \sum v_n \widetilde{Q}_n(y_3) \mod (3, v_1, \ldots)^2.$$

Proof. From (4.3), there are relations such that $I_1 = p\tilde{y}_8 + \cdots$ and $I_2 = v_1\tilde{y}_8 + \cdots$. Since Ker $\rho(BP^*(BPU(3)) \to H^*(BPU(3); \mathbb{Z}/3)) = (v_1, v_2, \ldots)$, we have the theorem from Lemma 4.8 and $Q_0y_7 = y_8$, $Q_1y_3 = y_8$. \square

Lemma 4.10. Let us write $e_i = Q_i y_3$ and $X = y_8^3$, $Y = y_{12}^2$. For i = 2j + 1 > 0, $e_i = f_i(X, Y) y_8$ and $e_{i+1} = g_{i+1}(X, Y) y_8 y_{12}$. Moreover,

$$g_{i+1} = (f'_i)^3 Y X^2 + f_i^3, \qquad f_{i+2} = (g'_{i+1})^3 Y^3 X + g_{i+1}^3 (Y^2 + X^2),$$

where $f' = \partial f/\partial Y$ and $g' = \partial g/\partial Y$. In particular, $e_i = 0$, y_8 , $y_{12}y_8$, $y_8(X^2 + Y^2)$ for i = 0, 1, 2, 3, respectively.

Proof. Let us denote $\mathscr{P}^{\#}a$ by # = 1/2|a|. For $i \ge 1$,

$$e_{i+1} = Q_{i+1}y_3 = (\mathscr{P}^{p^i}Q_i - Q_i\mathscr{P}^{p^i})y_3 = \mathscr{P}^{p^i}Q_iy_3 = \mathscr{P}^{p^i}e_i.$$

Here we note $|e_i| = 2(p^i - 1)$. Therefore

$$e_{i+1} = \mathcal{P}^{\#-1}e_i = \mathcal{P}^{\#-1}f\mathcal{P}^{\#}y_8 + \mathcal{P}^{\#}f\mathcal{P}^{\#-1}y_8$$

= $(\mathcal{P}^{\#-1}f)y_8^3 + f^3y_8y_{12}$.

Note $\mathscr{P}^{\#-1}X = 0$ and $\mathscr{P}^{\#-1}Y = 2y_{12}^3(-y_8^4) = y_{12}^3y_8^4$ since $\mathscr{P}^5y_{12} = -y_8^4$. Therefore

$$\mathcal{P}^{\#-1} \sum \lambda_{ij} X^i Y^j = \sum j \lambda_{ij} (X^i)^3 (Y^{j-1})^3 y_{12}^3 y_8^4.$$

This means $\mathscr{P}^{\#-1}f = (f')^3 Y X y_{12} y_8$ and $e_{i+1} = \{(f')^3 Y X^2 + f^3\} y_8 y_{12}$. Next consider e_{i+2} . We have

$$e_{i+2} = \mathcal{P}^{p^{i+1}} e_i = \mathcal{P}^{\#-1}(gy_8y_{12})$$

$$= ((g')^3 Y X y_{12} y_8) y_{12}^3 y_8^3 + g^3(y_8 y_{12}^4 + y_8^7)$$

$$= y_8((g')^3 Y^3 X + g^3(Y^2 + X^2)). \quad \Box$$

Lemma 4.11. Let us write $d_i = Q_i y_7$. Then for $i \ge 2$, $d_i = (e_{i-1})^3$. In particular, $d_i = y_8$, 0, y_8^3 , $(y_{12}y_8)^3$ for i = 0, 1, 2, 3. Proof. By induction, for $i \ge 2$,

$$O_i d_i = \mathscr{P}^{p^i} d_{i-1} = \mathscr{P}^{p^i} (e_{i-2})^p = (\mathscr{P}^{\#-1} e_{i-2})^3. \quad \Box$$

Lemma 4.12. A greatest common divisor of (e_i/y_8) for all $i \ge m$ is equal to 1. *Proof.* We assume that f_i has no double root and X, Y as root. Then f_i and f'_i have no common divisor. Suppose g_{i+1} and f_i have same root. Then from Lemma 4.10, f_i and f'_i have same root and this contradicts to the first assumption. Since $g'_{i+1} = (f_i)^3 X^2$, g_{i+1} and g'_{i+1} do not have the same divisor since so do not f_i and f'_i . Similar facts hold for i+2. \square

Corollary 4.13. The elements $I_1' = I_1/y_8$, $I_2' = I_2/y_8^3$ are prime for each $m \ge 0$, that is, for $m \ge 0$ if $aI_1' + bI_2' = 0$ in $P(m)^* \otimes S_8 \otimes S_{12}$, then $a = a'I_2'$ and $b = -a'I_1'$ in $P(m)^* \otimes S_8 \otimes S_{12}$.

Proof. Note that $I_1' = v_m f_m + v_{m+1} g_m y_{12} + \cdots$ and $I_2' = v_m (g_{m-1} y_{12})^3 + v_{m+1} (f_m)^3 + \cdots$. If $I_1' = ab$, then a is unit or b is unit from Lemma 4.12. These facts follow the corollary. \square

Theorem 4.14. $P(m)^*(BPU(3)) \simeq P(m)^* \otimes_{BP^*} BP^*(BPU(3))$.

Proof. Suppose that px=0 in $BP^*(BPU(3))$. Then $p\tilde{x}=aI_1+bI_2$ in $BP^*\otimes S_8\otimes S_{12}\tilde{y}_8^2$. Hence $0=aI_1+bI_2$ in $P(1)^*\otimes S_8\otimes S_{12}\tilde{y}_8^2$. This means also $0=aI_1'+bI_2'$. Hence $a=I_2'a'$ and $b=-I_1'a'$ mod p. Therefore $a=I_2a'+pa''$, $b=-I_1a'+pb''$ in $BP^*\otimes S_8\otimes S_{12}$. Hence $p\tilde{x}=pI_1a''+pI_2b''$. This means $\tilde{x}=I_1a''+I_2b''$ and $\tilde{x}=0$ in $BP^*(BPU(3))$. Therefore there is no p-torsion in $BP^*(BPU(3))$. Hence when m=1, the theorem is proved. The case $m\geq 2$ are also proved by the same argument from Corollary 4.13. \square

Therefore G = PU(3) satisfies (1)–(7) in the introduction.

5.
$$SO(4)$$
 for $p=2$ and F_4 for $p=3$

Recall $H^*(BSO(4); \mathbb{Z}/2) = \mathbb{Z}/2[w_2, w_3, w_4]$ and $Q_0w_2 = w_3$. It is known that there is no higher 2-torsion

$$(5.1) H^*(BSO(4))_{(2)} \simeq (Z_{(2)}[w_2^2] \oplus Z/2[w_3, w_2^2]\{w_3\}) \otimes Z_{(2)}[w_4].$$

Consider the Atiyah-Hirzebruch spectral sequence

(5.2)
$$E_2^{*,*} = H^*(BSO(4); BP^*) \Rightarrow BP^*(BSO(4)).$$

From (2.6), $Q_1w_3=w_3^2$ and $Q_1w_4=w_4w_3$. Let us write $A=BP^*[w_2^2\,,\,w_4^2]$. Then from $d_{2p-1}=v_1\otimes Q_1$, we have

(5.3)
$$E_{2p}^{*,*} = A \oplus A/(2, v_1)[w_3^2]\{w_3^2, w_4w_3\}.$$

This module is a direct product of a free BP^* -module and a free $BP^*/(2, v_1)$ -module. Hence the next nonzero differential is $d_{2p^2-1}=v_2\otimes Q_2$. Since $Q_2w_4w_3=w_3^2w_4^2$, we get

(5.4)
$$E_{2p^2}^{*,*} = A\{1, 2w_4\} \oplus B\{w_3^2\}/(2, v_1) \oplus B[w_4^2]\{w_3^2w_4^2\}/(2, v_1, v_2)$$

where $B=BP^*[w_3^2, w_2^2]$. Since $E_{2p^2}^{*,*}$ is generated by even dimensional elements, we see $E_{2p^2}\simeq E_{\infty}$.

Theorem 5.5. There is a BP*-module isomorphism

$$\begin{split} BP^*(BSO(4)) &\simeq \widetilde{A}\{1,\,2\tilde{w}_4\} \oplus \widetilde{B}\{\tilde{w}_3^2\}/(I_1,\,I_2) \\ &\oplus \widetilde{B}[[\tilde{w}_4^2]]\{\tilde{w}_3^2\tilde{w}_4^2\}/(I_1\tilde{w}_4^2,\,I_2\tilde{w}_4^2,\,I_3) \end{split}$$

where $\widetilde{A} = BP^*[[\widetilde{w}_2^2, \widetilde{w}_4^2]]$, $\widetilde{B} = BP^*[[\widetilde{w}_2^2, \widetilde{w}_3^2]]$, and $I_1 \equiv \sum v_n \widetilde{Q}_n(w_2 w_3)$, $I_2 \equiv \sum v_n \widetilde{Q}_n(w_3)$, and $I_3 \equiv \sum v_n \widetilde{Q}_n(w_3 w_4) \mod (2, v_1, \ldots)^2$.

Properties (1)-(3) and (7) hold immediately. Properties (4), (5) are proved by the arguments similar to the case G = PU(3), but a little difficult.

Lemma 5.6. Let $I_1' = I_1/(\tilde{w}_3^2)$, $I_2' = I_2/(\tilde{w}_3^2)$, and $I_3' = I_3/(w_3^2w_4^2)$. The ideals I_1' and I_2' are prime in $P(m)^* \otimes_{BP^*} B$. If $aI_3' \in \text{Ideal}(I_2, I_1)$ in $P(m)^* \otimes_{BP^*} B[[w_4^2]]$, then $a \in \overline{\text{Ideal}}(I_2, I_1)$.

Outline of proof. By the arguments similar to Lemma 4.10, we have $n \ge 2$

$$Q_n w_3 w_2 = (w_3 f(X, Y))^4$$
 where $X = w_2^3$, $Y = w_3^2$, $Q_{n+1} w_3 w_2 = (w_3 w_2 (f^2 + YX(f')^2))^4$ where $f' = \partial f/\partial X$,

and $Q_n w_3 = 2\sqrt{Q_{n+1}(w_3w_2)}$. Hence we can prove I_1' , I_2' are prime in $\widetilde{B} \otimes_{BP^*} P(m)^*$. Moreover we can see for $n \geq 2$

$$Q_n(w_3w_4)=w_2^2w_4^{2^{n-2}}\mod w_2^4.$$

Suppose $aI_3' = b_1I_1' + b_2I_2'$ in $P(m)^* \otimes_{BP^*} \widetilde{B}[[\tilde{w}_4^2]]$. Here recall that (we assume m even)

$$I'_{1} = (v_{m} + v_{m+2}\tilde{w}_{3}^{*} + v_{m+4}\tilde{w}_{3}^{*} + \cdots)\tilde{w}_{3}^{*} \mod \tilde{w}_{2}^{2},$$

$$I'_{2} = (v_{m+1} + v_{m+3}\tilde{w}_{3}^{*} + \cdots)\tilde{w}_{3}^{*} \mod \tilde{w}_{2}^{2},$$

$$I'_{3} = (v_{m} + v_{m+1}\tilde{w}_{4}^{*} + v_{m+2}\tilde{w}_{4}^{*} + \cdots)\tilde{w}_{4}^{*} \mod \tilde{w}_{2}^{2}.$$

Then we can easily see $a = b_1'I_1' + b_2'I_2' \mod \tilde{w}_2^2$. Now take out $(\tilde{a} = a - b_1'I_1' - b_2'I_2')I_3'$ from both sides of the supposition. Next, divide both sides by \tilde{w}_2^2 . Using these arguments, we can prove this lemma. \square

From Lemma 5.6, we can prove

(5.7)
$$P(m)^*(BSO(4)) \simeq P(m)^* \otimes_{BP^*} BP^*(BSO(4))$$

and also prove (4), (5) in the introduction.

Remark 5.8. It is easily seen

$$BP^*(BSO(3)) \simeq BP^*(BSO(4))/(\tilde{w}_4^2, 2\tilde{w}_4)$$

 $\simeq \overset{\approx}{A} \oplus \widetilde{B}\{\tilde{w}_3^2\}/(I_1, I_2), \text{ where } \overset{\approx}{A} = BP^*[[\tilde{w}_2^2]].$

Next consider $G = F_4$, p = 3. By Toda [T1] cohomology of $H^*(BF_4; \mathbb{Z}/3)$ is known.

Theorem 5.9 (Toda).

$$H^*(BF_4; \mathbb{Z}/3) \simeq \mathbb{Z}/3[x_{36}, x_{48}] \otimes \mathbb{C}$$

for

$$C = Z/3[x_4, x_8] \otimes \{1, x_{20}, x_{20}^2\} \oplus Z/3[x_{26}] \otimes \Lambda(x_9) \otimes \{1, x_{20}, x_{21}, x_{25}\}$$

where two terms of C have the intersection $\{1, x_{20}\}$.

Toda also determined the Steenrod algebra structure completely. (See Theorems I-III in [T1]). For example, $\beta x_i = x_{i+1}$ if x_{i+1} exists. Let $R_1 = Z/3[x_4, x_8]$, $R_2 = Z/3[x_8]$, and $R_3 = Z/3[x_{26}]$. Then it is easily computed in C

$$\operatorname{Ker} Q_0 = \{1\} \oplus x_4 R_1 \oplus x_8^2 R_2 \oplus x_{20} x_4 R_1 \oplus x_{20} x_8 R_2 \\ \oplus x_{20}^2 R_1 \oplus x_{26} R_3 \oplus x_{21} R_3 \oplus x_9 R_3 \oplus x_9 x_{21} R_3$$

and

$$\operatorname{Ker} Q_0 / \operatorname{Im} Q_0 \simeq \{1\} \oplus x_4 R_1 \oplus x_8^2 R_2 \oplus x_4 x_{20} R_1 \oplus x_8 x_{20} R_2 \oplus x_{20}^2 R_1.$$

The Poincaré series of $\operatorname{Ker} Q_0 / \operatorname{Im} Q_0$ is

$$1 + \frac{t^4 + t^{24} + t^{40}}{(1 - t^4)(1 - t^8)} + \frac{t^{16} + t^{28}}{1 - t^8} = \frac{1}{(1 - t^4)(1 - t^{16})(1 - t^{12})(1 - t^{24})}.$$

Therefore we see

Proposition 5.10. There is no higher torsion in $H^*(BF_4)_{(3)}$.

Remark. This fact is also easily proved by using the Becker-Gottlieb transfer. For the fibering $\pi \to B \operatorname{Spin}(9) \xrightarrow{p} BF_4$, we have $p_*p^* = \times \chi(\pi) = \times 3$. Since $H^*(B\operatorname{Spin}(9))_{(3)}$ is 3-torsion free, there is no higher 3-torsion. This argument is also applied for PU(3), p=3 and E_8 , p=5.

Consider the Atiyah-Hirzebruch type spectral sequence $E_2^{*,*} = H^*(BF_4; BP^*)$ $\Rightarrow BP^*(BF_4)$. Let $S_1 = BP^*[x_4, x_8]$, $S_2 = BP^*[x_8]$, $S_3 = BP^*/(3)[x_{26}]$, and $D = Z_{(3)}[x_{36}, x_{48}]$. Then

(5.11)
$$E_2^{*,*} = (BP^*\{1\} \oplus S_1x_4 \oplus S_2x_8^2 \oplus S_1x_4x_{20} \oplus S_2x_8x_{20} \oplus S_1x_{20}^2 \oplus S_3 \otimes \{x_{26}, x_{21}, x_9, x_9x_{21}\}) \otimes D.$$

The first nonzero differential is $d_{2p-1} = v_1 \otimes Q_1$ and we know, from Toda, $Q_1x_4 = x_9$, $Q_1x_{20} = x_{25}$, $Q_1x_{21} = x_{26}$. Let

$$A = (BP^*\{1, 3x_4\} \oplus S_1x_4^2 \oplus S_2x_8^2 \oplus S_1x_4x_{20} \oplus S_2x_8x_{20} \oplus S_1x_{20}^2).$$

Then

(5.12)
$$E_{2p}^{*,*} = (A \oplus S_3/(v_1)\{x_9, x_{26}\}) \otimes D.$$

Next nonzero differential is $d_{2p^2-1} = v_2 \otimes Q_2$ and $Q_2x_9 = x_{26}$. Therefore

$$(5.13) E_{2n^2}^{*,*} = (A \oplus S_3/(v_1, v_2)\{x_{26}\}) \otimes D.$$

Since this is generated by even dimensional elements $E_{2p^2}^{*,*} \simeq E_{\infty}^{*,*}$. The properties (1)-(3), (7) hold from (5.13).

Theorem 5.14. There is a BP^* -module isomorphism

$$BP^*(BF_4) \simeq \widetilde{A} \otimes \widetilde{D} \oplus BP^*[[\widetilde{x}_{26}]] \{\widetilde{x}_{26}\} \otimes \widetilde{D}/(I_1, I_2, I_3)$$

where $I_1 \equiv \sum v_n \widetilde{Q}_n(x_{25})$, $I_2 \equiv \sum v_n \widetilde{Q}_n(x_{21})$, and

$$I_3 \equiv \sum v_n \widetilde{Q}_n(x_9) \mod (3, v_1, \dots)^2.$$

The properties (4) and (5) are proved by the arguments similar to the arguments 4.11-4.14 and 5.6, but some more complicated. Note that $Q_n(x_i)$ are computed by Theorem III in [T]. For example, $Q_n(x_9) = 0$, 0, x_{26} , $x_{36}x_{26}$, $x_{26}(x_{36}^4 + x_{48}^3)$ for n = 0, 1, 2, 3, 4, respectively. For $n = \text{even} \ge 2$, $Q_n(x_9) = x_{26}f(X, Y)$ with $X = x_{36}^4$, $Y = x_{38}^4$. Then

$$Q_{n+1}(x_9) = x_{36}x_{26}((f')^3X^2Y + f^3) = x_{36}x_{26}g \mod x_{26}^2$$

and

$$Q_{n+2}(x_9) = x_{26}(YX^3(g')^3 + g^3(X+Y)) \mod x_{26}^2$$

where $f' = \partial f/\partial X$.

6.
$$G = G_2$$
, F_4 , E_6 , AND $Spin(n)$, $n \le 10$

The mod 2 cohomology of $B \operatorname{Spin}(n)$ is given by Quillen [Q2] (6.1)

$$H^*(B \operatorname{Spin}(n); \mathbb{Z}/2) \simeq \mathbb{Z}/2[w_{2h}(\Delta)] \otimes \mathbb{Z}/2[w_2, \ldots, w_n]/(Q_i w_2 | 0 \le i \le h)$$

where Δ is a spin representation of $\mathrm{Spin}(n)$ and 2^h is the Radon-Hurwitz number (see [Q2, p. 210]). When $n \leq 9$, $H^*(B \operatorname{Spin}(n); \mathbb{Z}/2)$ is a polynomial algebra generated by w_4 , w_6 , w_7 , w_8 , and $w_{2^h}(\Delta)$. Note that $G_2 \hookrightarrow \operatorname{Spin}(7)$ and

(6.2)
$$H^*(BG_2; \mathbb{Z}/2) = \mathbb{Z}/2[w_4, w_6, w_7].$$

Cohomology BG_2 and BF_4 is given by Borel [B].

At first we study $BP^*(BG_2)$ and consider the Atiyah-Hirzebruch spectral sequence. Since $Q_0w_6=w_7$, we have

(6.3)
$$E_2^{*,*} = A \oplus A/(2)[w_7]\{w_7\}$$
 where $A = BP^*[w_4, w_6^2]$.

Since $Q_1 w_4 = w_7$, we get for $B = BP^*[w_4^2, w_6^2]$

(6.4)
$$E_{2p}^{*,*} = B \oplus B\{2w_4\} \oplus B/(2, v_1)[w_7]\{w_7\}.$$

The facts $Q_2w_7 = w_7^2$ and $d_{2p^2-1}(2w_4) \neq v_2w_4w_7$ because $d_{2p^2-1}(v_2w_4w_7) = v_2w_7^2 \neq 0$, imply

(6.5)
$$E_{2p^2}^{*,*} = B \oplus B\{2w_4\} \oplus B/(2, v_1, v_2)[w_7^2]\{w_7^2\}.$$

Theorem 6.6. $E_{\infty}^{*,*} \simeq E_{2p^2}^{*,*}$ and we get

$$BP^*(BG_2) \simeq \widetilde{B} \oplus \widetilde{B}\{2\widetilde{w}_4\} \oplus \widetilde{B}[[\widetilde{w}_7^2]]\{\widetilde{w}_7^2\}/(I_1, I_2, I_3)$$

where $I_1 = \sum v_n \widetilde{Q}_n(w_7 w_6)$, $I_2 = \sum v_n \widetilde{Q}_n(w_7 w_4)$, $I_3 = \sum v_n \widetilde{Q}_n(w_7)$, and $\widetilde{B} = BP^*[[\widetilde{w}_4^2, \widetilde{w}_6^2]]$. Hence $BP^*(BG_2)$ satisfies (1)–(3), (7).

Remark 6.7. The ideal (I_1, I_2, I_3) seems to satisfy the similar property in Lemma 5.6. However we cannot prove it yet.

Let us write by $E_r^{*,*}(BG)$ the E_r -term of the Atiyah-Hirzebruch type spectral sequence converging to $BP^*(BG)$.

Now we consider $B \operatorname{Spin}(n)$, n = 7, 8, 9, while $H^*(B \operatorname{Spin}(n); \mathbb{Z}/2)$ for $n \le 6$ is generated by even dimensional elements. The cohomology

(6.8)
$$H^*(B \operatorname{Spin}(7); \mathbb{Z}/2) \simeq H^*(BG_2; \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_8]$$

and $Q_i w_8 = 0$ for $0 \le i \le 1$ and $Q_2 w_8 = w_8 w_7$. Therefore

(6.9)
$$E_r^{*,*}(B \operatorname{Spin}(7)) \simeq E_r^{*,*}(BG_2) \otimes Z_{(2)}[w_8]$$
 for $r \leq 2p^2 - 2$,

and we get

(6.10)
$$E_{2p^2}(B\operatorname{Spin}(7)) \simeq (E_{2p^2}(BG_2) \oplus B/(2, v_1)\{w_8\} \oplus B\{2w_4w_8\} \oplus B/(2, v_1, v_2)[w_7^2]\{w_8w_7\}[w_8^2].$$

Since $Q_3 w_8 w_7 = w_8^2 w_7^2$, we have

$$(6.11) \qquad \begin{array}{l} E_{2p^3}(B\,{\rm Spin}(7)) \simeq (E_{2p^2}(BG_2) \oplus B/(2\,,\,v_1)\{w_8\} \oplus B\{2w_2w_8\} \\ \qquad \qquad \oplus B/(2\,,\,v_1\,,\,v_2\,,\,v_3)[w_7^2]\{w_8^2w_7^2\})[w_8^2]. \end{array}$$

Therefore $E_{2p^3} \simeq E_{\infty}$ and the properties (1)-(3), (7) hold for G = Spin(7). The cohomologies are

(6.12)
$$H^*(B \operatorname{Spin}(8); \mathbb{Z}/2) \simeq H^*(B \operatorname{Spin}(7); \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_8'],$$

and

$$H^*(B \operatorname{Spin}(9); \mathbb{Z}/2) \simeq H^*(B \operatorname{Spin}(7); \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_{16}].$$

We can compute

(6.13)

$$E_{2p^4}(B \operatorname{Spin}(8))$$

$$\simeq (E_{2p^3}(B\operatorname{Spin}(7)) \oplus E_{2p^3}(B\operatorname{Spin}(7))' \ominus E_{2p^3}(BG_2) \\ \oplus (B(2, v_1, v_2)\{w_8w_8'\} \oplus B\{2w_4w_8w_8'\}\}$$

$$\oplus B/(2, v_1, v_2, v_3, v_4)[w_7^2]\{(w_8^4w_8'^2 + w_8^2w_8'^4)w_7^2\})[w_8^2])[w_8'^2],$$

$$E_{2p^4}(B \operatorname{Spin}(9))$$

$$\simeq (E_{2n^3}(B \operatorname{Spin}(7)))$$

$$(6.14) \qquad \oplus (B(2, v_1, v_2)\{w_{16}\} \oplus B\{2w_4w_{16}\} \\ \oplus B(2, v_1)\{w_8w_{16}\} \oplus B\{2w_4w_8w_{16}\} \\ \oplus B/(2, v_1, v_2, v_3, v_4)[w_7^2]\{w_{16}^2w_8^2w_7^2\})[w_8^2])[w_{16}^2].$$

Here we note $Q_4Q_3(w_8w_8')=(w_8^4w_8'^2+w_8^4w_8'^2)w_7^2$ and $Q_4Q_3w_{16}=w_8^2w_7^2w_{16}^2$. Hence $E_{2p^4}\simeq E_\infty$ and the properties (1)–(3) and (7) hold.

The cohomology is $H^*(BF_4; Z/2) \simeq H^*(BG_2; Z/2) \otimes Z/2[x_{16}, x_{24}]$. Moreover, $i^*\colon H^*(BF_4; Z/2) \to H^*(B\operatorname{Spin}(9); Z/2)$ is injective with $i^*x_{16} = w_{16} + \cdots$ and $i^*x_{24} = w_8^3 + \cdots$. We can see that $BP^*(BF_4)$ has the similar form as $BP^*(B\operatorname{Spin}(9))$ by exchanging w_8 for x_{24} . Therefore the properties (1)-(3), (7) hold for $G = F_4$.

The cohomology of $B \operatorname{Spin}(10)$ and E_6 are

(6.15)
$$H^*(B \operatorname{Spin}(10); \mathbb{Z}/2) \\ \simeq H^*(B \operatorname{Spin}(7); \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_{10}, w_{32}']/(w_7w_{10}),$$

(6.16)

$$H^*(BE_6; \mathbb{Z}/2) \simeq H^*(B \operatorname{Spin}(7); \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_{10}, y_{18}, w'_{32}, y_{34}, y'_{48}]/R$$

where R is the relation given Theorem 6.21 in [K-M2]. Since $Q_n w_{10} = 0$ and $Q_j w'_{32} = 0$ for $0 \le j \le 3$ from Theorem 6.7 in [Q2], we get

(6.17)
$$E_{2p^3}(B \operatorname{Spin}(10); \mathbb{Z}/2) \\ \simeq (E_{2p^3}(B \operatorname{Spin}(7)) \oplus BP^*[w_6, w_8, w_{10}]\{w_{10}\}) \otimes \mathbb{Z}_{(2)}[w_{32}'].$$

By the similar reason, we get

(6.18)

$$E_{2p^3}(E_6; \mathbb{Z}/2) \simeq (E_{2p^3}(B \operatorname{Spin}(7)) \oplus BP^*[w_6, w_8, w_{10}, y_{18}]\{w_{10}, y_{18}, y_{34}\}) \\ \otimes \mathbb{Z}_{(2)}[w_{32}', w_{48}'].$$

Therefore $E_{2p^3} \simeq E_{\infty}$ and the properties (1)-(3) and (7) hold for G = Spin(10) and E_6 .

At last we consider the case G = PSU(4n + 2). The cohomology is known from [K-M1]

(6.19)
$$H^*(BPU(4n+2); Z/2) \simeq Z/2[a_2, a_3, x_{8k}, y(I)]/R$$

where $1 < k \le 2n$, $I = (i_1, ..., i_r)$ for $1 < i_1 < \cdots < i_r \le 2n + 1$, $|y_I| = 4 \sum i_s - 2$, and R is the ideal generated by $a_3y(I)$ and $y(I)^2 + \cdots$ and y(I)y(J).

From Theorem 6.10 in [K-M1], x_{8k} is the 4kth Chern class of representation to $U(\binom{4n+2}{2})$. Hence $Q_m x_{8k} = 0$ for all $m \ge 0$. Note that

$$0 = Q_m(a_3y_I) = a_2^*a_3^*y_I + a_3Q_m(y_I) = a_3Q_m(y_I).$$

The ker $\cdot a_3$ is generated by (y(I)), which is even dimensionally generated. Hence $Q_m(y_I) = 0$, for all $m \ge 0$. Therefore

$$(6.20) \quad E_{2p}(BPU(4n+2)) \simeq E_{2p}(BSO(3)) \otimes Z_{(2)}[x_{8k}] \oplus BP^*[a_2, x_{8k}]\{y(I)\}.$$

Hence (1)–(3), (7) hold also for these cases. A similar result holds for G = PSp(2n+1) by using the result [K].

Adams conjectured that for all connected compact Lie group G, the map r in (3.2) is injective for $p \ge 3$

$$(6.21) r: H^*(BG; \mathbb{Z}/p) \hookrightarrow \varprojlim_{V} H^*(BV; \mathbb{Z}/p).$$

When p=2 the above r is injective for $G=\mathrm{Spin}(8n+k)$, $k\equiv 1,7,8$ mod 8 by Quillen [Q] and for G=SO(n), O(n), G_2 , F_4 by Borel [B] and for $G=E_6$ by Kono and Mimura [K-M2]. However for $G=E_7$ and $\mathrm{Spin}(11)$ the map r is not epic. The cohomology of $B\,\mathrm{Spin}(11)$ is given by

$$H^*(B \operatorname{Spin}(11); \mathbb{Z}/2) \simeq \mathbb{Z}/2[w_4, w_6, w_7, w_8, w_{10}, w_{11}]/R \otimes \mathbb{Z}/2[w_{64}]$$

where
$$R = (w_{11}w_6 + w_{10}w_7, w_{11}^3 + w_{11}^2w_4w_7 + w_{11}w_8w_7^2)$$
. Put

$$x = w_{10}^2 w_{11} + w_{10}^2 w_4 w_7 + w_{10} w_8 w_7 w_6 \in H^{31}(B \operatorname{Spin}(11); \mathbb{Z}/2).$$

Then

$$w_{11}^2 x = w_{10}^2 (w_{11}^3 + w_{11}^2 w_4 w_7 + w_{11} w_8 w_7^2) = 0.$$

Note that $x=w_{11}(w_{10}^2+w_{10}w_6w_4+w_8w_6^2)$ and hence $x^3=0$. On the other hand, define a map $\phi\colon H^*(B\operatorname{Spin}(11); Z/2)\to Z/2[a_{10}, a_{11}]/(a_{11}^3)$ by $\phi(w_j)=0$ for j=4,6,7,8,64 and by $\phi(w_{10})=a_{10}$, $\phi(w_{11})=a_{11}$. This map is a ring homomorphism and $\phi(x)=a_{10}^2a_{11}$, $\phi(x)^2\neq 0$. Therefore $x^2\neq 0$ but $x^3=0$. Hence r(x)=0.

Lemma 6.22. If (6.21) holds, then Conjecture 5 holds, that is, for all odd dimensional elements $x \in H^*(BG; \mathbb{Z}/p)$, there are i such that $Q_m x \neq 0$ for all $m \geq i$.

Proof. The Q_m -homology $H(H^*(BV; Z/p); Q_m) \simeq \otimes Z/p[y_i]/(y_i^{p^m}), |y_i| = 2$ from Künneth formula. If $|x| \leq |Q_m| = 2(p^m - 1)$, then $x \notin \text{Im } Q_m$ and so $Q_m x \neq 0$.

Corollary 6.23. If (6.21) holds, e.g., G = SO(n), then

$$\rho(P(n)^*(BG) \to H^*(X; \mathbb{Z}/p)) \subset H^{\text{even}}(BG; \mathbb{Z}/p),$$

for all $n \ge -1$ (where P(-1) = BP).

Remark 6.24. All examples given in §§5 and 6 satisfy the following conjecture stated in [T-Y]

$$BP(n-1)^*(BG) \simeq BP(n-1)^* \otimes_{BP^*} BP^*(BG)$$
 if $\operatorname{rank}_p G \leq n$.

REFERENCES

- [B-N] M. Bakuradze and R. Nadiradze, Cohomological realizations of two-valued formal groups and their applications, Bull. Acad. Sci. Georgian SSR 128 (1987), 21-24.
- [B] A. Borel, Sur l'homologie et la cohomologie die groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342.
- [H-K-R] M. Hopkins, N. Kuhn, and D. Revenel, Generalized group characters and complex oriented cohomology theories, preprint.
- [H] J. Hunton, *The Morava K-theories of wreath products*, Math. Proc. Cambridge Philos. Soc. **107** (1990), 309-318.
- [I] K. Inoue, The Brown-Peterson cohomology of BSO(6), J. Kyoto Univ. 32 (1992), 655-666.
- [J-W] D. Johnson and W. S. Wilson, BP-operations and Morava's extraordinary K-theories, Math. Z. 144 (1975), 55-75.
- [K-M1] A. Kono and M. Mimura, On the cohomology of the classifying space of PSU(4n+2) and PO(4n+2), Publ. Res. Inst. Math. Sci. Kyoto Univ. 10 (1975), 691-720.
- [K-M2] ____, Cohomology mod 2 of the classifying space of compact connected Lie group of type E_6 , J. Pure Appl. Algebra 6 (1975), 61-81.
- [K-M-S] A. Kono, M. Mimura, and N. Shimada, Cohomology of classifying space of certain associative H-space, J. Math. Kyoto Univ. 15 (1975), 607-617.
- [K] A. Kono, On cohomology mod 2 of classifying spaces of non-simply connected classical Lie groups, J. Math. Soc. Japan 27 (1975), 281-288.
- [L1] P. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc. Aarhus Summer Inst. on Algebraic Topology, 1970, pp. 256-269.
- [L2] ____, Homological properties of comodules over $MU_*(MU)$ and $BP_*(BP)$, Amer. J. Math. 98 (1976), 591-610.
- [L3] ____, Elements of infinite filtration in complex cobordism, Math. Scand. 30 (1972), 223-226.
- [Q1] D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549-572, 573-602.
- [Q2] ____, The mod 2 cohomology rings of extra-special 2-groups and spinor groups, Math. Ann. 194 (1971), 197-212.
- [T-Y] M. Tezuka and N. Yagita, Cohomology of finite groups and the Brown-Peterson cohomology.
 I, II, Lecture Notes in Math., vols. 1370, 1418, Springer-Verlag, Berlin and New York, 1989, 1990, pp. 396-408, 57-69.
- [T1] H. Toda, Cohomology mod 3 of the classifying space BF₄ of the exceptional group F₄,
 J. Math. Kyoto Univ. 13 (1973), 97-115.
- [T2] _____, Cohomology of classifying spaces, Homotopy Theory and Related Topics, Adv. Stud. Pure Math., vol. 9, Academic Press, Boston, Mass., 1986, pp. 75-108.
- [W] W. S. Wilson, The complex cobordism of BO_n, J. London Math. Soc. 29 (1984), 352-366.
- [Y1] N. Yagita, On relations between Brown-Peterson cohomology and the ordinary mod p cohomology theory, Kodai Math. J. 7 (1984), 273-285.
- [Y2] _____, Equivariant BP-cohomology for finite groups, Trans. Amer. Math. Soc. 317 (1990), 485-499.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABERDEEN, ABERDEEN AB9 2TY, UNITED KINGDOM

Current address: Department of Mathematics, Kyoto University, Kitashirakawa Sakyoku, Kyoto, Japan

Department of Mathematics, Musashi Institute of Technology, Tamazutumi Setagayaku, Tokyo, Japan

Current address: Faculty of Education, Ibaraki University, Mito, Ibaraki-Ken, Japan